

Blue Grass Chemical Agent-Destruction Pilot Plant (BGCAPP)

Environmental Document

Attachment F – Procedures to Prevent Hazards

**This document has been reviewed
for OPSEC and OPSEC-sensitive
information has been removed.**

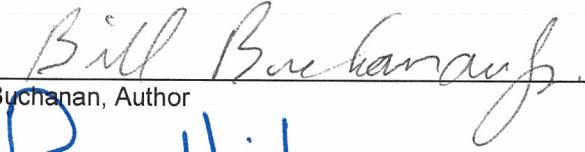
**This document has been reviewed
for ITAR/EAR and no ITAR/EAR-
sensitive information has been
found.**

Contract W52P1J-09-C-0013
(CDRL A019)

24915-00-G01-GGPT-00005

**23 March 2020
Rev. 4**
Final page is 35

prepared by
Bechtel Parsons Blue Grass Team (BPGT)


prepared for
Program Executive Office –
Assembled Chemical Weapons Alternatives (PEO ACWA)

Rev.	Date	Issued for	Changes
4	23 Mar 2020	Use	Inspection Log Removal and General Updates
3	16 May 2018	Use	Editorial Changes
2	09 May 2018	Use	Incorporate KDEP Comments
1	17 August 2017	Use	Incorporate KDEP Comments
0	05 May 2014	Use	Initial Issuance

Approval:

Date:

Bill Buchanan, Author

Ron Hink, Project Manager

3/25/2020

3/25/20

Table of Contents

Acronyms/Abbreviations	6
1.0 Request of Requirements Waiver	8
<i>Security [401 Kentucky Administrative Regulations (KAR) 39:090, Section 1; and 40 CFR 264.14].....</i>	<i>8</i>
<i>Waivers [401 KAR 39.090 , Section 1; and 40 CFR 264.14(a)(1) & (2)].....</i>	<i>8</i>
2.0 Security Procedures and Equipment	8
<i>401 KAR 39:090, Section 1; and 40 CFR 264.14 (b).....</i>	<i>8</i>
2.1 24-Hour Surveillance System.....	9
<i>401 KAR 39:090, Section 1; and 40 CFR 264.14(b)(1).....</i>	<i>9</i>
2.2 Barrier and Means to Control Entry	9
<i>401 KAR 39:090, Section 1; and 40 CFR 264.14(b)(2).....</i>	<i>9</i>
2.3 Barrier.....	9
<i>401 KAR 39:090, Section 1; and 40 CFR 264.14(b).....</i>	<i>9</i>
2.4 Means to Control Entry	9
<i>401 KAR 39:090, Section 1; and 40 CFR 264.14(b)(2)(ii).....</i>	<i>9</i>
2.5 Warning Signs	10
<i>401 KAR 39:090, Section 1; and 40 CFR 264.14(c)</i>	<i>10</i>
3.0 Inspection Schedule	10
<i>401 KAR 39:090, Section 1; and 40 CFR 264.15.....</i>	<i>10</i>
<i>General Inspection Requirements [401 KAR 39:090, Section 1, and 39:060, Section 5; and 40 CFR 264.15(a) & (b), and 270.14(b)(5)].....</i>	<i>10</i>
3.1 Types of Problems.....	11
<i>401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(3).....</i>	<i>11</i>
3.2 Frequency of Inspection	11
<i>401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(4).....</i>	<i>11</i>
3.3 Specific Process Inspection Requirements and Lightning Protection	11
<i>401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(4).....</i>	<i>11</i>
3.4 Container Inspections	12
<i>401 KAR 39:090, Section 1; and 40 CFR 264.174.....</i>	<i>12</i>
3.4.1 Tank System Inspections	13
<i>401 KAR 39:090, Section 1; and 40 CFR 264.195.....</i>	<i>13</i>
3.4.2 Waste Pile Inspections	13
<i>401 KAR 39:090, Section 1; and 40 CFR 264.254.....</i>	<i>13</i>
3.4.3 Surface Impoundment Inspections.....	13
<i>401 KAR 39:090, Section 1; and 40 CFR 264.226.....</i>	<i>13</i>
3.4.4 Incinerator Inspections	13
<i>401 KAR 39:090, Section 1; and 40 CFR 264.347.....</i>	<i>13</i>
3.4.5 Landfill Inspections.....	13
<i>401 KAR 39:090, Section 1; and 40 CFR 264.303.....</i>	<i>13</i>
3.4.6 Land Treatment Inspections.....	13
<i>401 KAR 39:090 Section 1; and 40 CFR 264.278.....</i>	<i>13</i>
3.4.7 Remedial Action.....	14
<i>401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(5)(c).....</i>	<i>14</i>

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1	3.4.8	Inspection Log.....	14
2		401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(5)(d)	14
3		Not applicable. No waiver of Inspection Log is required or being requested.	14
4	4.0	Waiver of Preparedness & Prevention Requirements.....	14
5		401 KAR 39:060, Section 5; and 40 CFR 270.14 (b)(6).....	14
6	5.0	Equipment Requirements.....	14
7		401 KAR 39:090, Section 1; and 40 CFR 264.32.....	14
8	5.1	Internal Communications	14
9		401 KAR 39:090, Section 1; and 40 CFR 264.32(a)	14
10	5.2	External Communications	14
11		401 KAR 39:090, Section 1; and 40 CFR 264.32(b)	14
12	5.3	Emergency Equipment	15
13		401 KAR 39:090, Section 1; and 40 CFR 264.32(c)	15
14	5.4	Water for Fire Control	15
15		401 KAR 39:090, Section 1; and 40 CFR 264.32(d)	15
16	6.0	Aisle Space Requirements	15
17		401 KAR 39:090, Section 1; and 40 CFR 264.35.....	15
18	7.0	Preventive Procedures, Structures, and Equipment.....	15
19		401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8).....	15
20	7.1	Loading and Unloading Operations	16
21		401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(i).....	16
22	7.2	Procedures to Prevent Hazards – Runoff Prevention	17
23		401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(ii).....	17
24	7.3	Procedures to Prevent Contamination of Water Supplies	18
25		401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(iii)	18
26	7.4	Equipment and Power Failures	18
27		401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(iv)	18
28	7.4.1	Control During Failure of Munitions Processing Equipment	18
29	7.4.2	Supercritical Water Oxidation (SCWO) Upset Control	19
30	7.4.3	Emergency Power.....	19
31	7.4.4	Personnel Protection Equipment (PPE)	21
32		401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(v).....	21
33	7.4.5	Atmosphere.....	23
34		401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(vi).....	23
35	7.5	Prevention of Reaction of Ignitable, Reactive, or Incompatible Wastes	25
36		401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(9).....	25
37	7.5.1	Precautions to Prevent Ignition or Reaction of Ignitable or Reactive Wastes.....	25
38		401 KAR 39:090, Section 1; and 40 CFR 264.17 and 264.17(c)	25
39	7.5.2	General Precautions for Handling Ignitable or Reactive Waste and Mixing of Incompatible Waste	27
40		40 CFR 264.17(a) and (b)	27
41	7.5.3	Management of Ignitable or Reactive Wastes in Containers.....	28
42		401 KAR 39:090, Section 1; and 40 CFR 264.177.....	28

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1	7.5.4	Management of Incompatible Wastes in Containers	28
2		40 CFR 264.177(a) and (b), 264.17(b) and (c).....	28
3	7.5.5	Management of Ignitable or Reactive Wastes in Tanks	28
4		401 KAR 39:090, Section 1; and 40 CFR 264.198.....	28
5	7.5.6	Incompatible Wastes in Tanks	29
6		401 KAR 39:090, Section 1; and 40 CFR 264.199.....	29
7	7.5.7	Ignitable/Reactive Wastes for Waste Piles.....	29
8		401 KAR 39:090, Section 1; and 40 CFR 264.256 and 264.17(b).....	29
9	7.5.8	Incompatible Wastes in Waste Piles	29
10		401 KAR 39:090, Section 1; and 40 CFR 264.257 and 264.17(b).....	29
11	7.5.9	Ignitable/Reactive Wastes in Surface Impoundments	29
12		401 KAR 39:090, Section 1; and 40 CFR 264.229 and 264.17(b).....	29
13	7.5.10	Ignitable/Reactive Wastes in Landfills.....	29
14		401 KAR 39:090, Section 1; and 40 CFR 264.304 and 264.17	29
15	7.5.11	Incompatible Wastes in Landfills	29
16		401 KAR 39:090, Section 1; and 40 CFR 264.312.....	29
17	7.5.12	Liquid Wastes in Landfills.....	29
18		401 KAR 39:090, Section 1; and 40 CFR 264.313(a-e).....	29
19	7.5.13	Incompatible Wastes in Surface Impoundments	30
20		401 KAR 39:090 Section 1; and 40 CFR 264.230 and 264.17(b)	30
21	7.5.14	Special Requirements for Containers Disposed in Landfills	30
22		401 KAR 39:090, Section 1; and 40 CFR 264.314 and 264.315	30
23	7.5.15	Ignitable or Reactive Wastes in Land Treatment Units	30
24		401 KAR 39:090, Section 1; and 40 CFR 264.281 and 264.17(b)	30
25	7.5.16	Incompatible Wastes in Land Treatment Units.....	30
26		401 KAR 39:090, Section 1; and 40 CFR 264.282].....	30
27	8.0	Records.....	30
28	9.0	References.....	31
29	Attachment 1 – Sample Weekly Inspection – Containers		32
30	Attachment 2 – Sample Daily Inspection Greater Than 90-Day Tanks and Subpart X		
31	(Miscellaneous) Systems		33
32	Attachment 3 – Sample Daily Inspection Liquid Loading Stations		35
33			

Acronyms/Abbreviations

Acronym	Definition
°F	degrees Fahrenheit
ANS	agent neutralization system
ASME	American Society of Mechanical Engineers
BGAD	Blue Grass Army Depot
BGCA	Blue Grass Chemical Activity
BGCAPP	Blue Grass Chemical Agent-Destruction Pilot Plant
CAM	cavity access machine
CCR	central control room
CCTV	closed-circuit television
CFR	Code of Federal Regulations
CHB	container handling building
CLA	chemical limited area
DoD	Department of Defense
DOT	Department of Transportation
EBH	energetics batch hydrolyzer
ECF	entry control facility
ECR	explosive containment room
ECV	explosive containment vestibule
EOC	emergency operations center
EONC	enhanced on-site container
FCS	facility control system
GB	nerve agent sarin, isopropyl methylphosphonofluoride
gpm	gallons per minute
H	blister agent mustard made by the Levinstein process, bis(2 chloroethyl) sulfide or 2,2' dichlorodiethyl sulfide (also called mustard agent)
HSA	hydrolysate storage area
HVAC	heating, ventilating, and air-conditioning
KAR	Kentucky Administrative Regulation
MDB	munitions demilitarization building
MPT	metal parts treater
NFPA	National Fire Protection Association
pH	degree of acidity or alkalinity
PPE	personal protective equipment
RCRA	Resource Conservation and Recovery Act
RD&D	research, development, and demonstration
RO	reverse osmosis system
RSM	rocket shear machine

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1	SCO	scene control officer
2	SCWO	supercritical water oxidation
3	SDB	standby diesel generator
4	SDS	spent decontamination solution
5	SPB	SCWO processing building
6	STA	SCWO tank area
7	TOC	total organic carbon
8	TSDF	treatment, storage, and disposal facility
9	UPA	unpack area
10	UPS	uninterruptible power supply
11	VSL	vapor screening level
12	VX	nerve agent, O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate
13		
14		

1.0 REQUEST OF REQUIREMENTS WAIVER

A horizontal bar chart with 10 categories on the y-axis and a scale from 0 to 1000 on the x-axis. Category 1 has the highest count, followed by Category 2. Categories 3-10 have counts between 100 and 300. Category 10 has the lowest count.

Category	Count
1	~950
2	~900
3	~250
4	~200
5	~150
6	~100
7	~100
8	~100
9	~100
10	~100

2.0 SECURITY PROCEDURES AND EQUIPMENT

401 KAR 39:090, Section 1; and 40 CFR 264.14 (b)

A horizontal bar chart with four bars of increasing length from left to right, representing data values. The bars are black on a white background.

2.1 24-Hour Surveillance System

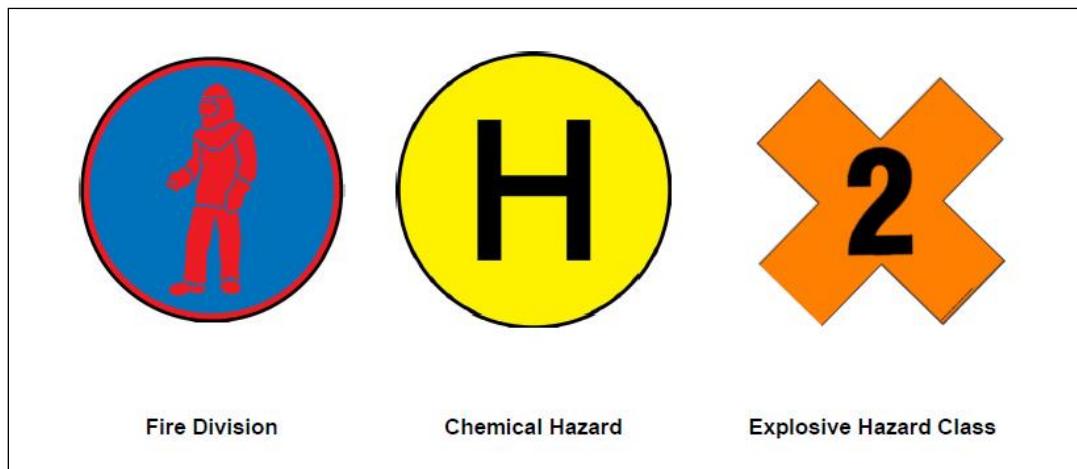
401 KAR 39:090, Section 1; and 40 CFR 264.14(b)(1)

Term	Percentage
GDP	95
Inflation	92
Interest rates	88
Central bank	85
Monetary policy	82
Quantitative easing	78
Inflation targeting	75
Interest rate hike	95
Interest rate cut	80
Interest rate parity	65
Nominal interest rate	70
Real interest rate	68

2.2 Barrier and Means to Control Entry

401 KAR 39:090, Section 1; and 40 CFR 264.14(b)(2)

A horizontal bar chart with 15 bars of varying lengths, all colored black. The bars are arranged in two distinct groups: a top group of 8 bars and a bottom group of 7 bars. The top group has heights approximately 95, 15, 15, 95, 15, 95, 15, and 15. The bottom group has heights approximately 95, 95, 95, 95, 95, 95, and 15. The bars are set against a white background with no grid lines.


2.5 Warning Signs

401 KAR 39:090, Section 1; and 40 CFR 264.14(c)

Signs warning, in English, "Danger – Unauthorized Personnel Keep Out" are posted to identify the area as restricted and dangerous and that unauthorized entry is illegal, are posted along the perimeter fence surrounding BGAD at intervals of 500 feet or less and near all access gates.

These signs are easily visible at a distance of 25 feet. Large signs (i.e., approximately 4 feet by 6 feet in size) describing the "Conditions of Entry" are posted at each gate and warn of the possible consequences of unauthorized entry.

Warning signs at the BGCAPP chemical agent handling area are approximately 5 feet by 4 feet in size and posted at 50-foot intervals around the BGCAPP perimeter. The legends "Warning," "Danger," "Restricted Area," and "Use of Force Authorized to Prevent Unauthorized Entry" are clearly legible at distances of 25 feet or more. The signs also indicate that entrance to the BGCAPP chemical agent handling area is unlawful without permission of the BGAD Commander.

3.0 INSPECTION SCHEDULE

401 KAR 39:090, Section 1; and 40 CFR 264.15

General Inspection Requirements [401 KAR 39:090, Section 1, and 39:060, Section 5; and 40 CFR 264.15(a) & (b), and 270.14(b)(5)]

The scheduled inspections of the BGCAPP waste storage and treatment tanks, Subpart X systems, and the container storage areas include containers/tanks/Subpart X systems, containment, safety, emergency, and operating equipment needed to prevent, detect, or respond to environmental or human health hazards. The BGCAPP Project Document Control Center (PDCC) maintains the completed inspections and other related documents.

3.1 Types of Problems

401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(3)

Attachment 1, Attachment 2, and Attachment 3 identify the criteria used during container storage, tank system and Subpart X storage, and liquid loading and unloading station inspections, respectively.

3.2 Frequency of Inspection

401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(4)

The "Inspection Frequency" columns in Attachment 1, Attachment 2, and Attachment 3 provide the frequency of inspection for containers, tank systems, Subpart X units, and liquid loading stations. Basis for selection of these frequencies was the rate of possible deterioration of equipment and the probability of an environmental or human health incident if the deterioration, malfunction, or operator error goes undetected between inspections. BGCAPP performs daily inspections of areas subject to spills, such as loading and unloading areas, when in use.

3.3 Specific Process Inspection Requirements and Lightning Protection

401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(4)

Specific process inspection requirements are addressed in additional detail in a separate document; Procedures to Prevent Hazards, Inspection Schedule.

The grounding/lightning protection system optimizes the protection of exposed buildings, structures and associated electrical and electronic circuits from lightning hazards. The grounding/lightning protection system is designed in accordance with the U.S. Army Corps of Engineers design manual, CEHND 1110-1-1, *Engineering Guidance Design Manual for Architect-Engineers*, October 1994. Site specific requirements are listed in the BGCAPP Engineering Specification for Lightning Protection. The building lightning protection also meets the requirements of NFPA 780 and buildings with ammunition and explosives also meet the requirements of DA-PAM 385-64.

Buildings and structures are protected against lightning strikes by a system of interconnected roof-mounted air terminals, down-conductors and dedicated ground rods. All conductors and air terminals are made of copper. Conductor in-line splices and exposed taps are made with compression fittings. All underground electrical connections and connections to structural steel members are made with exothermic welds. Exterior metal ductwork and piping are protected from lightning before entering the building, as required. The lightning protection system is connected to the electric power grounding grid. The minimum burial depth for the lightning protection grounding system is 3.0 ft. Grounding conductors are insulated from the equipment grounding system.

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1 NFPA 780 is the requirement for the design and installation of lightning protection systems. Air
2 terminals are solid copper, ½-in. diameter and 24 in. long (minimum). All lightning protection
3 conductors are 32 strands of 14 AWG copper conductor, unless otherwise noted on the drawings.
4 The lightning protection system ground terminals are bonded to the facility grounding grid system.
5 Lightning protection system down conductors and stub-ups are protected by a 1-in. PVC conduit.
6 All exposed lightning protection system connections are made by mechanical bolted connections.
7 All lightning protection system down-conductor connections to the underground ground grid are
8 made by an exothermic welding process. Lightning protection system down-conductors, air
9 terminals and other components will not be removed or disturbed at facilities or buildings remaining
10 for use after project closure.

11 The grounding/lightning protection system is designed and installed to provide a high degree of
12 personnel protection against electrical shock under all adverse conditions. Only qualified
13 components and materials are used to ensure continued system reliability over the life of the
14 facility.

15 The grounding grid is designed to minimize the voltage rise that occurs on all grounded system
16 components during a ground fault at the 138 kV substation, or during a lightning strike. The system
17 is designed to provide safe step-and-touch voltage levels at all locations within the facility and at
18 the perimeter fence.

19 The lightning protection system is designed to provide a solid, low-resistance path to earth to
20 dissipate high voltages imposed by lightning strikes. The system is designed to limit voltage rise on
21 the system and adjoining structures to acceptable low levels during dissipation of the lightning
22 energy.

23 3.4 Container Inspections

24 401 KAR 39:090, Section 1; and 40 CFR 264.174

25 BGCAPP conducts weekly inspections of containers in storage areas for deterioration, corrosion,
26 spills, and evidence of leakage. In addition, containers are inspected initially and annually
27 thereafter for tightness of closure devices in compliance with 40 CFR 264 Subpart CC. These
28 weekly inspections include a visual inspection for obstructions and proper maintenance of aisle
29 space between the rows of palletized containers. Attachment 1 shows a sample inspection
30 checklist for container inspection activities. Container storage areas that are located in Category A,
31 A/B, and B areas in the munitions demilitarization building (MDB) will have infrequent entries due
32 to the toxic nature of these areas. Inspections will be accomplished primarily via closed-circuit
33 television (CCTV) and documented accordingly.

1 **3.4.1 Tank System Inspections**

2 ***401 KAR 39:090, Section 1; and 40 CFR 264.195***

3 BGCAPP conducts daily inspections of waste tank and Subpart X systems. The inspections
4 address overfill and spill control equipment, aboveground portions of the tank and Subpart X
5 systems, data gathered from monitoring and leak detection equipment, construction materials, and
6 the area immediately surrounding the externally accessible portion of the tank and Subpart X
7 systems as well as the secondary containment system, which are monitored by level transducers in
8 the primary sumps. Secondary sumps are inspected daily through use of CCTV or by facility
9 personnel, based on their location in the facility. Additional criteria evaluated during the daily
10 inspections include the evaluation of the presence of corrosion or spills/releases of hazardous
11 waste as well as the condition of ancillary equipment. Attachment 2 shows a sample inspection
12 checklist for the tank system and Subpart X inspection activities.

13 Attachment 3 provides a sample inspection checklist for liquid loading/unloading areas, when in
14 use.

15 **3.4.2 Waste Pile Inspections**

16 ***401 KAR 39:090, Section 1; and 40 CFR 264.254***

17 Not applicable. BGCAPP does not have any waste piles.

18 **3.4.3 Surface Impoundment Inspections**

19 ***401 KAR 39:090, Section 1; and 40 CFR 264.226***

20 Not applicable. BGCAPP does not have any surface impoundments.

21 **3.4.4 Incinerator Inspections**

22 ***401 KAR 39:090, Section 1; and 40 CFR 264.347***

23 Not applicable. BGCAPP does not have any incinerators.

24 **3.4.5 Landfill Inspections**

25 ***401 KAR 39:090, Section 1; and 40 CFR 264.303***

26 Not applicable. BGCAPP does not have any landfills

27 **3.4.6 Land Treatment Inspections**

28 ***401 KAR 39:090 Section 1; and 40 CFR 264.278***

29 Not applicable. BGCAPP does not have any land treatment units.

3.4.7 Remedial Action

401 KAR 39:090, Section 1; and 40 CFR 264.15(b)(5)(c)

The BGCAPP facility/area currently has no solid waste management units (SWMUs) or corrective actions identified. Section 6 in the BGCAPP Resource Conservation and Recovery Act (RCRA) Research, Development, and Demonstration (RD&D) Permit Application describes BGCAPP emergency response plans and section 7 in the BGCAPP RCRA RD&D Permit Application describes the closure of BGCAPP.

3.4.8 Inspection Log

401 KAR 39:090, Section 1; and 40 CFR 264.15(d)

Inspection logs will be in the form of checklists maintained by PDCC.

4.0 WAIVER OF PREPAREDNESS & PREVENTION REQUIREMENTS

401 KAR 39:060, Section 5; and 40 CFR 270.14 (b)(6)

Not applicable. A waiver of preparedness and prevention requirements is not requested or sought.

5.0 EQUIPMENT REQUIREMENTS

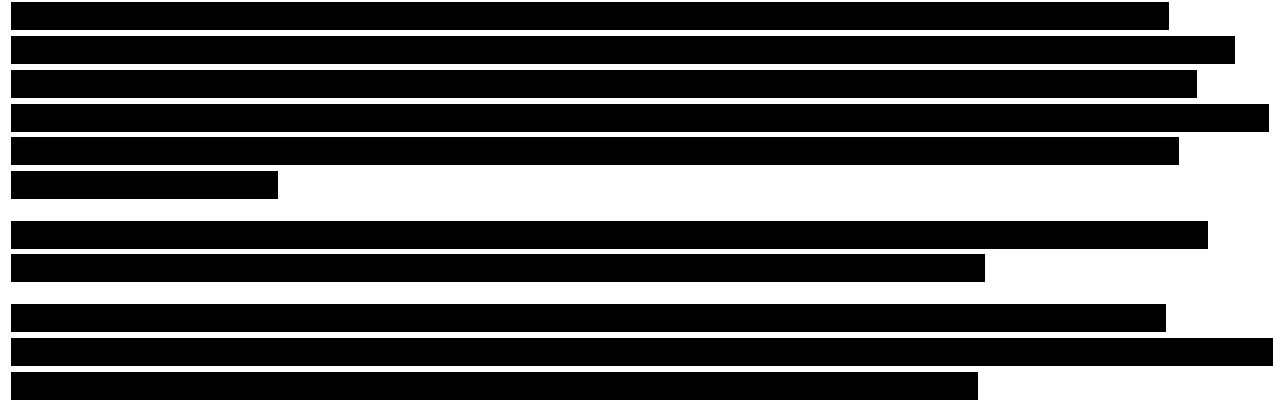
401 KAR 39:090, Section 1; and 40 CFR 264.32

The BGCAPP Facility will have the following equipment as required by 40 CFR 264.32.

5.1 Internal Communications

401 KAR 39:090, Section 1; and 40 CFR 264.32(a)

BGCAPP maintains an internal communications system consisting of hard-wired telephones, two-way hand held radios, cellular phones, a public address system, and audible signals. This system provides a combination of voice and signal information throughout the facility to employees and BGAD Security.


5.2 External Communications

401 KAR 39:090, Section 1; and 40 CFR 264.32(b)

A horizontal bar chart with five bars of increasing length from left to right, representing data values. The bars are black on a white background.

1 **5.3 Emergency Equipment**

2 *401 KAR 39:090, Section 1; and 40 CFR 264.32(c)*

14 **5.4 Water for Fire Control**

15 *401 KAR 39:090, Section 1; and 40 CFR 264.32(d)*

25 **6.0 AISLE SPACE REQUIREMENTS**

26 *401 KAR 39:090, Section 1; and 40 CFR 264.35*

27 Not applicable. No waiver of the adequate aisle space requirement is required or being requested.

28 **7.0 PREVENTIVE PROCEDURES, STRUCTURES, AND**
29 **EQUIPMENT**

30 *401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)*

31 The following paragraphs provide information on the procedures, structures, and equipment used
32 to prevent hazards in the BGCAAP Facility.

1 **7.1 Loading and Unloading Operations**

2 ***401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(i)***

3 BGCA transports munitions from the storage igloos to the BGCAPP container handling building
4 (CHB) in enhanced on-site containers (EONCs). The EONCs are airtight vessels specifically
5 designed to contain chemical munitions during transport. BGCAPP monitors EONCs prior to
6 opening or if stored in the CHB greater than 7 days to ensure no chemical agent hazard is present
7 due to leaking munitions. A forklift transfers non-leaking munitions to a conveyor system to begin
8 processing. If an agent hazard is identified in the EONC (indicating a leaking munition), the EONC
9 is moved to an area under a higher level of engineering control, where it is opened and personnel
10 wearing appropriate personal protective equipment (PPE) manually process the munitions during
11 the "leaker" campaign.

12 A forklift also moves the contaminated wood pallets for treatment in the metal parts treater (MPT)
13 or containerization for shipment off site to an approved treatment or disposal facility.

14 Forklift operators are specifically trained to operate the forklift and use guides to pick up loads,
15 move through congested areas, and place loads. Ramps are equipped with rails/curbs. The forklifts
16 are of a size that provides the capacity to handle and transport anticipated loads. The conveyor
17 moves decontaminated or uncontaminated dunnage to an area for containerization to minimize risk
18 to workers. To minimize risk and contact to workers, the residue handling system receives, via
19 conveyor, decontaminated burster tubes and solid munitions bodies for containerization and
20 recycling or disposal in a permitted landfill.

21 Piping transfers agent and energetics hydrolysate from the MDB to the hydrolysate storage area
22 (HSA) and from the HSA to the supercritical water oxidation (SCWO) processing building (SPB).
23 Hazardous waste piping in these areas is located outside of secondary containment for each
24 respective tank system. Because these piping runs are located outside of secondary containment,
25 daily visual inspections must and will be performed according to the requirements of
26 40 CFR 264.193(f)(1). Due to these piping runs being located outside and exposed to potentially
27 freezing conditions, piping insulation is required. Although this protects the lines/waste from
28 freezing, it also poses difficulties in completing the required visual inspections. To accomplish
29 these required daily inspections, BPBG has installed Trace-Tek leak detection system. This system
30 has the capability to detect a leak from the piping systems and report back to a control panel.
31 Submittal of the inspection schedule compliance schedule item (CSI #17) will include specific
32 details of the Trace-Tek system and its capabilities.

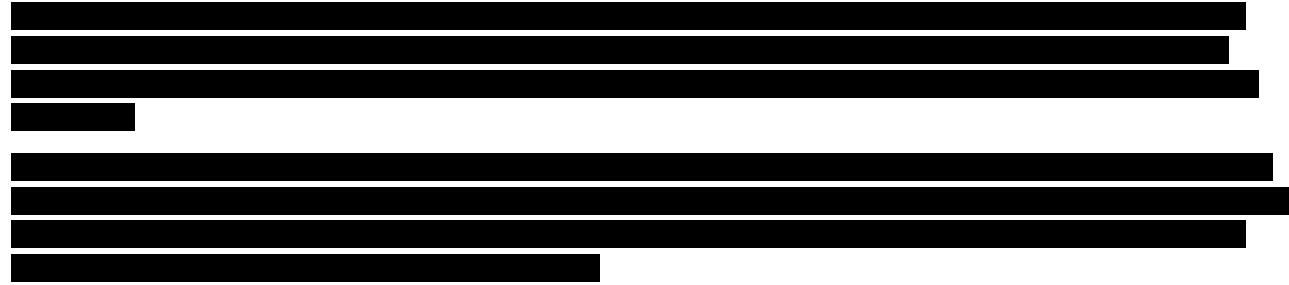
33 The SCWO system processes agent and energetics hydrolysates, which includes spent
34 decontamination solution (i.e., solution captured in the Category A, B, and C sumps and from spent
35 decontamination holding tanks). After further treatment in the reverse osmosis system (RO), the
36 liquid stream is separated into two separate streams: RO permeate, which is recycled back into
37 the facility, and RO reject, which is transferred from the RO reject storage tanks to tanker trucks for
38 off-site treatment and/or disposal at an appropriately permitted, commercial TSDF.

39 In the SCWO processing building (SPB), the dissolved aluminum compounds in the energetics
40 hydrolysate are precipitated from the hydrolysate in the APS and physically separated from the
41 hydrolysate in the aluminum filtration system as filter cake. The aluminum filter cake accumulates
42 in bins for off-site transport to an appropriately permitted, commercial TSDF for disposal.

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

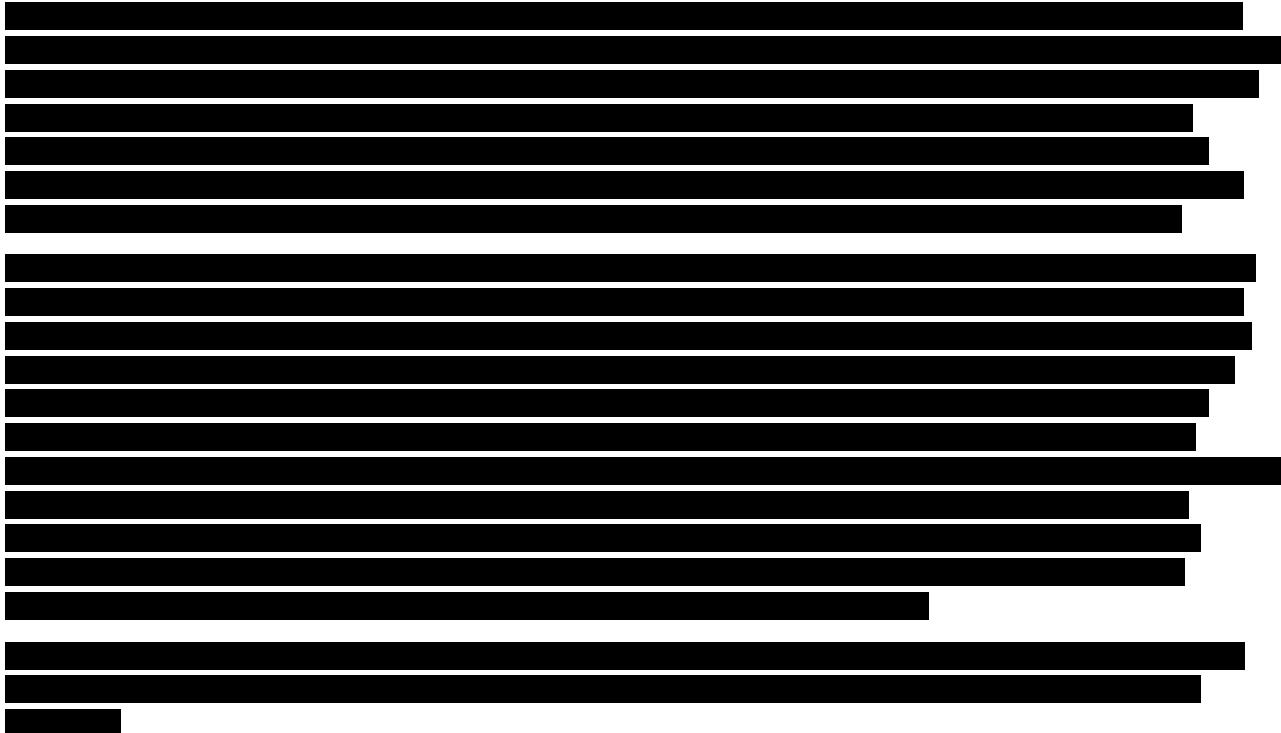
1 The tanks located in the SCWO tank area (STA) include the SCWO effluent tanks (3), RO
2 permeate tanks (2), and RO reject tanks (2) as well as a process water tank. The SCWO effluent
3 that is produced in the low pressure gas/liquid separator at approximately 140 degrees Fahrenheit
4 ($^{\circ}$ F) is sent to the SCWO effluent tanks. A recent design change has added an air-cooled heat
5 exchanger built in two sections, in series, each having a cooling fan to circulate ambient air past
6 the tubes containing the SCWO effluent, which reduces the temperature of the effluent to
7 approximately 100 $^{\circ}$ F. This ensures the feed temperature to the RO units is not exceeded, which is
8 the basis for adding this heat exchanger. Once the temperature is lowered, the SCWO effluent is
9 fed to the RO modules for purification with two resulting liquid streams: the RO permeate, which
10 will be reused in the facility, and the RO reject, which will be sent off-site for disposal to an
11 appropriately permitted, commercial TSDF.

12 Monitoring ensures rocket motors, dunnage, and secondary wastes are not agent contaminated.
13 Boxes (wooden, metal or other suitable materials of construction) will be used to store rocket
14 motors and SFTs during monitoring and shipment of these wastes. Rocket motors will be
15 monitored and shipped in this type of container. SFTs will be loaded and monitored in the motor
16 packing room / discharge airlock and then either shipped in a box similar to the ones used for
17 rocket motors without the dividers or shipped in a roll-off container. If the latter option is chosen,
18 the SFTs will be monitored in the reusable container prior to transfer to a roll-off box for offsite
19 shipment and disposal.


20 Conveyors move MPT ash and residue from the MPT and directly discharge the ash and residue
21 into collection containers. Personnel in appropriate PPE remove the spent carbon from the
22 ventilation systems and other carbon filter systems and place it into lined containers. The spent
23 carbon and MPT residue is shipped off site for treatment and/or disposal.

24 Dedicated specialized vehicles handle the 20- and 40-cubic-foot roll-off bins for positioning and
25 transport for off-site disposal. Industry standard forklift "grabber jaws" handle drum-type containers
26 to prevent slippage/spillage of container contents.

7.2 Procedures to Prevent Hazards – Runoff Prevention


401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(ii)

29 BGCAPP design features prevent runoff from hazardous waste handling areas to other areas of
30 BGCAPP or the environment. Waste-handling activities in the CHB, MDB, and SPB take place in
31 enclosed buildings. BGCAPP eliminates the risk of precipitation/runoff reaching these areas. The
32 waste-handling areas of the CHB, MDB, and SPB have secondary containment, and the MDB and
33 SPB have sumps, to collect spilled hazardous waste. The floor sumps for all hazardous waste
34 management areas in the MDB have provisions for transferring sump contents to spent
35 decontamination holding tanks. There are non-contaminated drainage (NCD) sumps located in the
36 MDB, and other secondary sumps in the SPB where personnel use manually operated pumps to
37 remove accumulated liquids.

1 **7.3 Procedures to Prevent Contamination of Water Supplies**

2 *401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(iii)*

24 **7.4 Equipment and Power Failures**

25 *401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(iv)*

26 **7.4.1 Control During Failure of Munitions Processing Equipment**

32 The FCS includes process controllers with functional keyboards for operator interface and control
33 of the system, a monitor for displays, a printer to print out alarms and messages, and an event
34 recorder or data logger. An operator is able to remove a unit or piece of equipment from automatic
35 control and control it manually through the console keyboard. The FCS has a failsafe design.
36 Local controllers communicate with the CCR on a real-time basis. Should this communication link
37 become inactive (due to a failure in the FCS), the local controls automatically shut down to a safe
38 mode. The communication system is a redundant system to reduce the likelihood of a failure in the
39 communication link.

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

The FCS provides continuous automatic control of the demilitarization process. System interaction by the operator is limited to initiation of process systems and reaction to abnormal conditions. In monitoring critical functions, the FCS gives advanced warning of alarms when possible, indicating that a critical or hazardous condition is developing and warning operators to take action. Interlocks provide responses for various conditions. Shutdown can be immediate or staged.

The operator and FCS continuously monitor shutdown requests and interlocks. The FCS uses applicable pre-alarms or indicators, when possible, to warn that a shutdown condition is imminent. This gives the operator time to prevent a shutdown or to prepare for it. BGCAPP developed interlocks to respond to various conditions in a manner applicable to the condition and equipment. The system logs all abnormal conditions, such as starting and stopping of equipment. BGCAPP maintenance and management analyze these logs and records for malfunctions, maintenance issues, needed procedural changes, etc.

7.4.2 Supercritical Water Oxidation (SCWO) Upset Control

A second, separate FCS is provided for the SCWO. The SCWO liquid effluent is monitored, online, for total organic carbon (TOC), conductivity, and pH. Startup and shutdown phases use a clean-burning fuel, good mixing in the reactor, and highly oxidizing conditions to minimize the potential for carbonization production. Transient upset conditions (i.e., those conditions causing higher TOC levels) that could result in minor amounts of incompletely oxidized material and potentially higher TOC levels cause the liquid effluent to be automatically diverted to an off-spec (effluent) tank. This tank provides storage until the effluent can be reprocessed through the SCWO reactor to achieve complete oxidation; only clean effluent (i.e., meeting TOC, conductivity, and pH criteria) is routed to the evaporator.

During equipment failures or other upset conditions, the SCWO effluent diverts from the SCWO effluent tanks in the STA to the off-spec effluent tank. The off-spec effluent tank is located in the SPB and is controlled by the SPB heating, ventilating, and air-conditioning (HVAC) system.

7.4.3 Emergency Power

Term	Percentage
GMOs	85%
Organic	92%
Natural	88%
Artificial	65%
Organic	90%
Natural	87%
Artificial	72%
Organic	93%
Natural	89%
Artificial	68%
Organic	91%
Natural	86%
Artificial	70%
Organic	94%
Natural	90%
Artificial	74%
Organic	89%
Natural	85%
Artificial	62%

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

Topic	Percentage
Global warming	98
Evolution	97
Penis size	96
Sexual orientation	95
Abortion	94
Homework	93
Black holes	68
Big Bang theory	71
Climate change	72
Global warming	98
Evolution	97
Penis size	96
Sexual orientation	95
Abortion	94
Homework	93
Black holes	68
Big Bang theory	71
Climate change	72

1

2 **7.4.4 Personnel Protection Equipment (PPE)**

3 ***401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(v)***

4 The protection of BGCAPP personnel involves engineering controls through design of BGCAPP,
5 administrative procedures, and PPE.

6 **7.4.4.1 Engineering Design**

7 The ventilation design provides high velocities to minimize the presence of chemical agent in the
8 breathing zone of workers. The cascade ventilation design of the BGCAPP facility also provides
9 ventilation control of chemical agent by ensuring areas expected to have the lowest or no chemical
10 agent present exhaust to areas with an increasing potential for the presence of chemical agent.
11 The design of BGCAPP also provides continuous air monitoring of chemical agent in the munitions
12 processing area, and CCR operators can monitor the chemical agent concentrations in the process
13 and surrounding areas. This design feature allows operators to monitor not only the potential
14 exposures of workers but also the potential for migration of chemical agent from the munitions
15 processing area into areas where workers have lower levels of PPE. CCTV monitored by CCR
16 operators allows not only observation of workers and work activities, but equipment processing and
17 any liquid releases (also detected by automatic liquid level alarms in sumps/containments) in the
18 munitions processing area.

19 The combination of extensive, negative-pressure ventilation (i.e., with airflow from least to most
20 potentially contaminated areas), continuous air monitoring, and CCR observation of processing
21 and workers provides a design with extensive built in worker protection features.

22 **7.4.4.2 Administrative Controls**

23 BGCAPP personnel conduct processing, maintenance, and other work activities under various
24 plans and procedures. These procedures provide stepwise requirements that control how workers
25 perform specific work activities. For example, BGCAPP provides worker protection procedures for
26 lockout/tagout, and other procedures, to include:

- 27 • Entry into and egress from chemical munitions areas
- 28 • Monitoring of chemical agent work areas
- 29 • Emergency response to chemical spills
- 30 • Decontamination of personnel leaving chemical agent work areas
- 31 • Heat stress monitoring of workers in encapsulating suits
- 32 • Response to chemical agent detections in areas surrounding chemical agent work areas
- 33 • Additional administrative procedures designed to protect BGCAPP personnel, including the
34 following:
 - 35 ○ Systemization barricade safety
 - 36 ○ Systemization compressed gas safety
 - 37 ○ Systemization confined space
 - 38 ○ Systemization electrical safety
 - 39 ○ Systemization elevated work platforms
 - 40 ○ Systemization evaluation and certification of fume hoods
 - 41 ○ Systemization fall protection

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

- 1 Systemization fire protection and prevention
- 2 Systemization hand and portable power tool safety
- 3 Systemization hot work safety
- 4 Systemization job safety analysis and field hazard analysis
- 5 Systemization laser safety
- 6 Systemization lockout/tagout
- 7 Systemization open process safety
- 8 Systemization portable ladder safety
- 9 Systemization powered industrial trucks
- 10 Systemization safety shower/eyewash safety
- 11 Systemization scaffold safety

12 Information contained in BGCAPP procedures is available for KDEP personnel to review at any
13 time. BPBG does not plan to include procedures in this document or anywhere else in the permit
14 application. Procedures change frequently and would not be appropriate to include in permitting
15 documentation due to the frequency of potential permit modifications which would limit the ability of
16 operations personnel to perform necessary, time critical changes as needed.

7.4.4.3 Use and Selection of PPE

18 Hazard identification; routes of exposure (inhalation, skin absorption, ingestion, or injection); and
19 performance of the PPE material as a barrier to potential hazards determines the selection of PPE
20 to be worn during agent operations. Other factors in the selection process include matching the
21 PPE to work requirements and task-specific conditions, task duration, and potential for heat stress.
22 Health hazard assessments and job task analyses for any hazardous operation consider these
23 factors. Selecting the appropriate level of dress also includes the requirements provided in
24 Department of Army Pamphlet (DA PAM) 385 61, Toxic Chemical Agent Safety Standards, and
25 those required for handling explosive munitions or components.

26 The following subparagraphs list the PPE levels for normal munitions operations and support
27 activities. Normal munitions operations and support activities include routine maintenance,
28 calibration, adjustments, and processing in BGCAPP demilitarization systems, as well as leaker
29 processing. BGCAPP upgrades PPE levels, as operating or emergency conditions require. The
30 health and safety professionals involved with PPE selection recognize that PPE must be
31 compatible with the agent that may be present, compatible with electro explosive devices, and
32 resistant to other industrial chemicals, that may be present.

- 33 A. OSHA Level A is demilitarization protective ensemble (DPE) or comparable
34 commercially available encapsulating suits worn during normal munitions and support
35 operations in HVAC Category A, A/B, and B areas. Fully encapsulating, Level A
36 protection is worn in Category B rooms unless the hazard of dermal exposure to agent is
37 known not to exist.
- 38 B. OSHA Level B protection provides the same level of respiratory protection as Level A
39 but does not incorporate an encapsulating suit and instead uses chemical resistant suits
40 (not fully encapsulating) and other items of PPE such as aprons, hoods, and gloves.
41 Level B protection is worn only if the dermal exposure hazard does not require full
42 dermal protection.

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1 C. OSHA Level C provides very limited dermal protection and is used only in areas with a
2 very limited potential for release of airborne hazardous materials and only with
3 continuous air monitoring present. This level of protection (e.g., air purifying respirator) is
4 precautionary and allows for safe evacuation. It is not normally used where an agent
5 hazard is known to exist. This level of PPE protects against industrial hazards (i.e., acid
6 gases) with proper selection of cartridges and PPE fabrics.

7 D. OSHA Level D provides no protection for respiratory exposure to agent or an industrial
8 chemical, so BGCAPP personnel use Level D only if a respiratory exposure cannot exist.
9 Examples of OSHA Level D protection include maintenance coveralls and street clothes.

10 When responding to a chemical agent release, the required level of protection is determined for
11 each emergency response activity and situation. However, for known or suspected agent liquid or
12 vapor releases, OSHA Level A or B protection is required.

13 When responding to an industrial chemical release, the scene control officer (SCO), with
14 assistance/approval of the Safety representative, selects the correct level of PPE. The safety data
15 sheets (SDSs) for the chemical involved, National Institute for Occupational Safety and Health
16 (NIOSH) guidance, the Department of Transportation (DOT) Emergency Response Guidebook,
17 and BGCAPP emergency response procedures are references used in making this selection. The
18 PPE selection made by the SCO also considers the work requirements of the entry, to ensure the
19 durability of the PPE is appropriate for that work.

20 **7.4.4.4 General Safety Criteria for Bulk Hazardous Chemicals**

21 Emergency eyewash stations and showers are located near hazardous liquid handling areas
22 except for work areas in which only PPE are used.

23 **7.4.5 Atmosphere**

24 ***401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(8)(vi)***

25 BGCAPP uses a cascade HVAC system to control and prevent agent and industrial chemical
26 releases into the atmosphere.

27 **7.4.5.1 Chemical Agent Hazard Categories and Cascade Ventilation System**

28 Each room in the MDB is designated with one of the six ventilation categories established by
29 BGCAPP (A, A/B, B, C, D, or E, based on the potential for agent contamination during normal
30 munitions and support operations); descriptions of these categories are as follows:

31 A. Category A: Areas with a high probability of liquid agent contamination (maintained
32 under negative pressure)

33 B. Category A/B: Areas with a high probability of vapor contamination and which, under
34 certain process conditions, may be contaminated with liquid agent (maintained under
35 negative pressure)

36 C. Category B: Areas with a high probability of agent vapor contamination resulting from
37 routine operations (maintained under negative pressure)

38 D. Category C: Areas with a low probability of agent vapor contamination (maintained
39 under negative pressure)

40 E. Category D: Areas expected to never have agent contamination (atmospheric pressure)

41 F. Category E: Areas that must remain occupied during agent releases (e.g., control rooms
42 and medical facilities) and in which personnel require additional protection (maintained
43 under positive pressure)

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1 The MDB has a cascade ventilation and filtration system. Areas in the facility with the highest
2 potential for contamination are maintained at the most negative pressure. Airflow cascades
3 progressively from the areas of least probable contamination (e.g., Category C areas) to the areas
4 of highest probable contamination (Category A areas). Sealing of walls, floors, ceilings, and all
5 penetrations of Category A, A/B, B, and C areas prevents migration of liquid or vapor agent to
6 other areas. Airlocks or ancillary spaces separate Category A and A/B areas from the outside
7 environment. Category upgrading of an area provides temporary control of an increased hazard
8 potential in an area (e.g., the potential presence of liquid agent in a Category B area may result in
9 the area being temporarily upgraded to a Category A area).

10 HVAC filtration units clean the air exhausted from this ventilation system prior to release to the
11 environment. These filtration units contain both high-efficiency particulate air (HEPA) filters that can
12 remove at least 99.97 percent of airborne particulates 0.3 micrometers in diameter, and carbon to
13 remove organics from the airstream. The filtration units contain carbon trays arranged in six beds
14 or banks within each filter unit, with agent monitoring conducted between the beds to detect agent
15 breakthrough. Chemical agent demilitarization facilities (i.e., seven existing or closed facilities)
16 used these filtration units extensively and have more than a 30 year history of preventing agent
17 releases to the environment.

18 The ECVs and ECRs, and the energetics batch hydrolyzer (EBH) room, are equipped with blast
19 doors and gates. Blast gates allow process material to pass into and out of the containment rooms.
20 Blast doors provide access to the blast rooms for personnel and equipment. To protect the MDB
21 ventilation and filtration system transfer and exhaust ducts and associated components that
22 penetrate the walls and ceilings of these rooms, BGCAPP installed blast valves in the penetrations.
23 The blast valves consist of ganged arrays of various sizes for the required airflows. Standoff metal
24 plates in front of the penetration openings shield the valves from flying fragments. The design of
25 the duct also sufficiently attenuates the shock pressure leakage in the ventilation ducts to prevent
26 damage to filter media.

27 SDGs provide standby power to operate the MDB HVAC system and filtration units during utility
28 power outages and prevent releases to the atmosphere.

7.4.5.2 Industrial Hazards and the Cascade Ventilation System

30 The extensive ventilation control measures instituted to prevent the migration of, and eliminate the
31 atmospheric hazards associated with, chemical agents are more than adequate to control the more
32 common industrial chemical hazards that exist within BGCAPP processes.

1 **7.5 Prevention of Reaction of Ignitable, Reactive, or Incompatible**
2 **Wastes**

3 ***401 KAR 39:060, Section 5; and 40 CFR 270.14(b)(9)***

4 **7.5.1 Precautions to Prevent Ignition or Reaction of Ignitable or Reactive**
5 **Wastes**

6 ***401 KAR 39:090, Section 1; and 40 CFR 264.17 and 264.17(c)***

7 **7.5.1.1 Open Flames, Smoking, Welding or Cutting, Heat/Hot Surfaces and Sparks**

8 Because BGCAPP is located in the BGAD ammunition restricted area, BGCAPP prohibits smoking
9 and open flames without a permit. Smoking areas exist at specific locations on the facility, posted
10 with signs indicating smoking authorized only in these designated areas. No smoking, cutting,
11 welding, or any other spark producing operations occur without a permit in any hazardous waste
12 storage area with the waste present. Any cutting or welding operations require a "hot work permit."
13 To prevent contact, storage areas are located away from equipment that might produce radiant
14 heat, sparks, frictional heat, or hot surfaces.

15 Design of the demilitarization process and operations in the MDB prevents accidental ignition or
16 reaction of chemical agent, explosives, and propellants. BGCAPP prohibits "hot" cutting (e.g., with
17 oxyacetylene torch) and welding within the process areas of the MDB while wastes are present in
18 those areas. Equipment grounding during munition processing prevents the transfer of electrostatic
19 charges to the munitions. Special floor coatings are provided in areas used for munitions handling
20 (e.g., ECRs). The design of these floor coatings prevents the generation of static charges and
21 sparking by personnel or equipment movement across the floors.

22 **7.5.1.2 Response to Fires**

23 BGCAPP considers a fire in any part of BGCAPP as a serious event requiring immediate attention
24 and corrective action. Because any fire exposes energetics in the munitions to an explosion and
25 may result in rapid spreading of the fire, BGCAPP personnel do not make any distinction between
26 size and type of fires. BGCAPP immediately reports all fires inside the MDB, and immediately
27 institutes corrective action.

28 **7.5.1.3 Fire Protection Systems**

29 Fire protection systems designed to meet the special needs of BGCAPP areas protect BGCAPP
30 from fires and explosions caused by functioning munitions, electrical shorts, fuel leaks, overheated
31 equipment, or miscellaneous equipment and other causes. In particular, the fire protection system
32 provides immediate response to any situation involving fire inside the MDB. The fire protection
33 system prevents the spread of a fire and allows time for operators to evacuate the area. The fire
34 protection system also provides cooling and a degree of protection for munitions in the unpack
35 areas (UPAs), ECVs, and ECRs (i.e., if a fire starts away from these areas).

36 The fire protection system for the MDB includes:

- 37 • Automatic fire detectors throughout the building (smoke, thermal, and photoelectric types)
- 38 • Manual fire alarm pull stations at exit points from the various hazard areas of the building
- 39 • Fire protection water
- 40 • An automatic sprinkler system for the UPAs that is activated by smoke detectors
- 41 • An automatic fire extinguishing medium system to protect the CCR

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

- 1 • A dry chemical fire protection system in the toxic maintenance area (TMA)
- 2 • Portable fire extinguishers located throughout the building and at entry/exit points for the
- 3 building
- 4 • A water deluge system in the ECVs/ECRs

5 **7.5.1.4 Chemical Reactions or Detonations**

6 Production of the explosives, propellants, and fuse components originally occurred in a water
7 solution. Therefore, these items are compatible with water, and dissolution in water reduces the
8 reactivity hazard of these components, so no special precautions are necessary to prevent contact
9 with water. The chemical agents H and VX are heavier than water (specific gravity greater than
10 1.0), practically insoluble, and would be covered or blanketed by water, reducing the volatilization
11 rate from any pool of chemical agent. GB is miscible in water; however, dissolution of a small
12 amount of this chemical agent in water also has the effect of reducing the partial pressure of the
13 chemical agent above the solution, and thus the amount of agent in the air. For these reasons, no
14 special precautions are necessary to prevent contact with water from the automatic sprinkler
15 systems. In fact, the reverse is true; flooding a small spill of chemical agent with a large amount of
16 water is a possible mitigation technique in an emergency.

17 Safe handling of explosives and munitions materials is a continuing concern at BGCAPP. For that
18 reason, BGCAPP drew upon U.S. Army experience in safely handling, transporting, and storing
19 chemical munitions and explosives. Safe handling procedures cover the transportation and
20 BGCAPP operations and apprise personnel of the hazards in handling these munitions. BGCAPP
21 uses conveyors to transport munitions and their components within the MDB and the CHB. The
22 conveyor incorporates stops, interlocks, and guard rails that prevent the munitions and
23 components from falling.

24 The rocket cutting machines (RCMs) and rocket shear machines (RSMs) in the ECRs remove the
25 explosive components of munitions. Similarly, processing of the projectiles in the ECRs removes
26 the bursters. The fire suppression system is designed to mitigate the risk of a significant fire
27 resulting from rocket cutting or burster removal. The ECRs have reinforced concrete enclosures to
28 contain the effects of an accidental explosion. These areas are unmanned during normal
29 operations.

30 The RSM and munition washout system (MWS) remove the chemical agent from the munitions.
31 Protective clothing is required in these areas, which are normally unmanned during processing
32 operations. The probability of chemical agent reaction is low due to the contained design of the
33 drain stations at the RSMs and the compatibility of the materials in BGCAPP. If a chemical agent
34 reaction occurs, the system is designed to prevent release of emissions.

35 The possibility of a detonation is further minimized by shearing rocket motors and bursters into
36 relatively small pieces, open at both ends, so that combustion initiates at both ends of a
37 cylindrically shaped propellant or burster and there is no net force to cause acceleration of a work
38 piece in any axial direction. The burster detector will be used at BGCAPP as a secondary check
39 before inserting the GB and VX projectiles into the CAMs. The burster detector is a laser detector
40 mounted over the weigh station scale. The robot holds the projectile under the detector after the
41 nose closure is removed to confirm the burster well is empty before inserting the projectile into the
42 CAMs. Please note the GB projectiles do not contain bursters and pose no detonation potential. If
43 the burster detection probe detects a burster in the munition, the projectile will be taken to a reject
44 table in the MWS room until a determination of follow up activities is determined. These activities
45 may include the initiation of the Explosive Ordnance Disposal (EOD) activities by appropriate
46 personnel.

1 **7.5.2 General Precautions for Handling Ignitable or Reactive Waste and Mixing**
2 **of Incompatible Waste**

3 **40 CFR 264.17(a) and (b)**

4 **7.5.2.1 General Safety Criteria for Bulk Hazardous Chemicals**

5 In hazardous liquid handling areas, except for work areas in which only PPE suits are used, an
6 emergency eyewash and shower are located within 25 feet.

7 Hazardous waste storage/treatment tanks and vessels have spill level control and overfill
8 prevention controls that are linked to the FCS. Tanks and pumps on the bulk hazardous chemical
9 storage and distribution system have sufficient secondary containment to contain any release of
10 hazardous chemicals and allow efficient cleanup of these materials. Category A, A/B, B, and C
11 areas with pumps and piping that convey spent decontamination solutions, rinse water, and airlock
12 shower water to spent decontamination solution (SDS) storage tanks have collection sumps. Sump
13 pumps send the spills and wash-down liquids to the appropriate process system tanks or to
14 portable wastewater containers, depending on the contents of the wash-down water. Floors are
15 sloped to trenches that feed these sumps.

16 Vents from tanks discharge to safe areas outside the areas in which the specific tank is located.
17 These areas exhaust to the HVAC system and nitrogen sweeps the tanks to avoid buildup of vapor
18 mixtures.

19 **7.5.2.2 Acids, Bleach, and Caustic Piping Systems**

20 Piping for all acids, bleach, and caustic services (i.e., hydrochloric [HCl], and sulfuric acid [H₂SO₄];
21 and caustic [NaOH] solutions ranging from 1 percent to 50 percent) are in accordance with
22 American Society of Mechanical Engineers (ASME) B31.3, Process Piping Guide, Normal Fluid
23 Service requirements. The central decontamination system supplies decontaminant to hose and
24 shower stations in toxic areas and other areas as required by operations.

25 Precautions applicable to these systems include the use of appropriate piping materials for the
26 intended service, welded piping construction, use of safety shields on flanged connections outside
27 Category A areas including valve bonnets, and use of safety showers and eyewash stations at
28 appropriate locations.

29 **7.5.2.3 Hydrolysates**

30 Piping for agent and energetics hydrolysates complies with ASME B31.3, Process Piping, Normal
31 Fluid Service requirements. Additionally, design of piping systems includes a corrosion allowance
32 of 0.25 inch that further increases the safety factor.

1 **7.5.3 Management of Ignitable or Reactive Wastes in Containers**

2 **401 KAR 39:090, Section 1; and 40 CFR 264.177**

3 Containers holding ignitable wastes are located more than 15 meters (50 feet) from the BGAD
4 facility property line. BGCAPP does not expect to generate liquid reactive wastes for storage in
5 containers. However, should this occur, the containers of reactive waste would be placed on a
6 containment pallet separated from other wastes by a distance of at least 4 feet, and located more
7 than 50 feet from the BGAD facility property line. Storage is within the boundaries set forth in
8 40 CFR 270.15(c) and 264.176 and details of the management of these wastes are provided in
9 section 3.4.3.14.3, Container Management (401 KAR 34:180 and 38:150 & 40 CFR 264.170–179
10 and 270.15) of the BGCAPP RCRA RD&D Permit Application. The containment pallets have a
11 secondary containment capacity of at least 55 gallons. That is more than 10 percent of the
12 maximum storage capacity of the containers on the containment pallet and equal to or greater than
13 a single 55-gallon drum.

14 **7.5.4 Management of Incompatible Wastes in Containers**

15 **40 CFR 264.177(a) and (b), 264.17(b) and (c)**

16 BGCAPP does not expect incompatible hazardous waste generation in facility processes.
17 Incompatible wastes, if generated, are not stored together in the same container. BGCAPP
18 personnel wash empty containers before reusing if the containers may have previously contained
19 wastes incompatible with new wastes being placed into the container. There are currently no plans
20 to reuse old waste containers. If questions arise about whether wastes are compatible, BGCAPP
21 conducts laboratory incompatibility determinations prior to storing containers near each other or
22 storing potentially incompatible wastes within the same container. Incompatible wastes in separate
23 containers are either stored in separate containments or stored (if liquid) on separate containment
24 pallets.

25 **7.5.5 Management of Ignitable or Reactive Wastes in Tanks**

26 **401 KAR 39:090, Section 1; and 40 CFR 264.198**

27 The agent hydrolysate from the agent neutralization system (ANS) is stored in the HSA after
28 laboratory analysis confirms agent destruction (i.e., 99.9999 percent destruction efficiency [DE]) in
29 the agent neutralization reactors. A nitrogen blanket on the hydrolysate tanks eliminates any
30 potential for a hazard, and the tank headspace vents directly to the MDB HVAC filter to avoid
31 ignitable vapor buildup. Other BGCAPP tanks in which hydrolysate is stored or processed have
32 similar headspace venting.

33 The spent decontamination holding and other BGCAPP tanks are in full compliance with the NFPA
34 requirements. An independent PE certified the tank assessment reports (TARs) that BGAD
35 submitted to the Kentucky Department for Environmental Protection (KDEP). These reports
36 concluded that the BGCAPP hazardous waste tank systems complied with all appropriate
37 standards and requirements. The agent holding tank, agent surge tank, and spent decontamination
38 holding tanks are located in areas provided with trenches and sumps with containment in excess of
39 the largest tank capacity. The spacing between tanks is in excess of 3 feet.

40 BGCAPP designed all tanks for a single purpose, with the exception of the spent decontamination
41 holding tank system, so mixing of reactive or incompatible waste streams is not possible. The
42 storage of waste that may be ignitable or reactive is in accordance with NFPA Code 30.

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1 **7.5.6 Incompatible Wastes in Tanks**

2 ***401 KAR 39:090, Section 1; and 40 CFR 264.199***

3 The design of BGCAPP maintains separation of dissimilar waste streams throughout the
4 demilitarization process.

5 Agent contaminated hazardous wastes such as SDS and liquid agent collected from the RSMs
6 stored in the agent collection/toxic storage are managed in separate systems until processed in the
7 ANS.

8 Energetics wastewater from the EBH is processed through a separate system until blended with
9 agent hydrolysate from the ANS for processing in the SCWO.

10 This separation of waste streams minimizes the opportunity for the combining of incompatible
11 wastes. In addition, different chemical agents are not processed together and, when changing from
12 one chemical agent to another, the waste tanks that have contained agent-derived wastes are
13 washed to eliminate the possibility of incompatible wastes.

14 **7.5.7 Ignitable/Reactive Wastes for Waste Piles**

15 ***401 KAR 39:090, Section 1; and 40 CFR 264.256 and 264.17(b)***

16 Not applicable. BGCAPP does not use waste piles.

17 **7.5.8 Incompatible Wastes in Waste Piles**

18 ***401 KAR 39:090, Section 1; and 40 CFR 264.257 and 264.17(b)***

19 Not applicable. BGCAPP does not use waste piles.

20 **7.5.9 Ignitable/Reactive Wastes in Surface Impoundments**

21 ***401 KAR 39:090, Section 1; and 40 CFR 264.229 and 264.17(b)***

22 Not applicable. BGCAPP does not use surface impoundments.

23 **7.5.10 Ignitable/Reactive Wastes in Landfills**

24 ***401 KAR 39:090, Section 1; and 40 CFR 264.304 and 264.17***

25 Not applicable. BGCAPP does not use landfills.

26 **7.5.11 Incompatible Wastes in Landfills**

27 ***401 KAR 39:090, Section 1; and 40 CFR 264.312***

28 Not applicable. BGCAPP does not use landfills.

29 **7.5.12 Liquid Wastes in Landfills**

30 ***401 KAR 39:090, Section 1; and 40 CFR 264.313(a-e)***

31 Not applicable. BGCAPP does not use landfills.

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1 **7.5.13 Incompatible Wastes in Surface Impoundments**

2 ***401 KAR 39:090 Section 1; and 40 CFR 264.230 and 264.17(b)***

3 Not applicable. BGCAPP does not use surface impoundments.

4 **7.5.14 Special Requirements for Containers Disposed in Landfills**

5 ***401 KAR 39:090, Section 1; and 40 CFR 264.314 and 264.315***

6 BGCAPP does not operate a landfill but, as a generator, plans to use approved commercial
7 landfills for disposal in a limited number of instances, to include disposal of:

- 8 A. Empty containers (i.e., crushed or volume reduced).
- 9 B. A limited number of agent-derived wastes composed of solid wastes and having a
10 headspace reading of less than 1 vapor screening level (VSL).
11 Agent-derived wastes are screened using headspace monitoring prior to shipment off
12 site for disposal. Results of this monitoring are less than 1 VSL or the waste is not
13 disposed of in a landfill. Section 3.5.1, Headspace Air Monitoring and Army
14 Decontamination Levels, in the BGCAPP RCRA RD&D Permit Application includes a
15 description of the monitoring methods used.
- 16 C. Wastes disposed of in landfills (i.e., wastes with the possibility of "free liquids") packed
17 with sorbents to eliminate the possibility of free liquids.
- 18 D. Closure debris and wastes (e.g., demolition waste from which any residual chemical
19 agent or industrial hazards have been mitigated in accordance with the Closure Plan
20 (section 7 in the BGCAPP RCRA RD&D Permit Application).

21 BGCAPP does not dispose of lab packs in landfills and uses alternative forms of
22 treatment/disposal (e.g., incineration).

23 **7.5.15 Ignitable or Reactive Wastes in Land Treatment Units**

24 ***401 KAR 39:090, Section 1; and 40 CFR 264.281 and 264.17(b)***

25 Not applicable. BGCAPP does not operate land treatment units. All hazardous waste is shipped to
26 an appropriately permitted, commercial TSDF for final disposal.

27 **7.5.16 Incompatible Wastes in Land Treatment Units**

28 ***401 KAR 39:090, Section 1; and 40 CFR 264.282]***

29 Not applicable. BGCAPP does not operate land treatment units. All hazardous waste is shipped to
30 an appropriately permitted, commercial TSDF for final disposal.

31 **8.0 RECORDS**

32 This document shall be retained in accordance with 24915-000-2KP-A03-00012, Records
33 Retention and Turnover.

1 **9.0 REFERENCES**

2

- 3 • 24915-000-2KP-A03-00012, Records Retention and Turnover
- 4 • Code of Federal Regulations, Title 40, Protection of Environment
- 5 • DA PAM 385-61, Toxic Chemical Agent Safety Standards
- 6 • Kentucky Administrative Regulation, Title 401, Energy and Environment Cabinet
7 Department for Environmental Protection

1
2

Attachment 1 – Sample Weekly Inspection – Containers

BGCAPP Area(s):				Date:	Time:	Inspector(s):	
Hazardous Waste Container Storage				Inspection Criteria	Inspection Frequency	Corrective Action Required (Yes/No) (if Yes, describe)	Deficiency (describe)
Inspected (✓)	Item	Regulatory Citation					
Inventory	262.34	Check container fill date (90 day or 365 day limit not exceeded).	Weekly				
Container Label	262.31	Label legible, each container labeled, and marked with words "Hazardous Waste".	Weekly				
Container Condition	264.171	Evidence or signs of corrosion, leaks, or other deterioration. A leaking container must be repaired or the contents transferred to a container in good condition.	Weekly				
Container Closed	264.173(a)	Bungs, plugs, caps, seals, or other closure devices are tightly closed.	Weekly				
Aisle Space	264.35	Sufficient space (min 30') to inspect containers and for access with emergency equipment.	Weekly				
Incompatible Wastes	264.171 264.176	Placed on a containment pallet and separated from other wastes by at least 4 feet.	Weekly				
Secondary Containment	264.175	Evidence or signs of cracks, gaps, mars, scuffs, or other deterioration.	Weekly				
Loading, Unloading, and Transfer Areas (inspect daily when in use)	264.15(b)(4)	Evidence or signs of leaks, spills, and integrity of the area.	Weekly				
Security				Inspection Criteria	Inspection Frequency	Corrective Action Required (Yes/No) (if Yes, describe)	Deficiency (describe)
Inspected (✓)	Item	Regulatory Citation					
Fences, Gates, and Locks	264.14	Evidence of gaps, holes, or damage to fence. Downed or damaged fence or gate posts. Erosion gaps and/or holes under the fence/gate. Vandalism, open or missing locks.	Weekly				
Perimeter Warning Signs	264.14	Presence of warning signs on fences and gates. Visible and legible.	Weekly				
Security of Process Areas	264.14	Doors locked to prevent unauthorized entry when buildings or processes are not in use.	Weekly				
<u>Additional Comments:</u>							

1
2
3

Attachment 2 – Sample Daily Inspection Greater Than 90-Day Tanks and Subpart X (Miscellaneous) Systems

BGCAPP Area(s):			Date:	Time:	Inspector(s):	
Inspected (y)	Item	Regulatory Citation	Inspection Criteria	Inspection Frequency	Corrective Action Required (Yes/No) (if Yes, describe)	Deficiency (describe) Corrective Action Completed
	Overfill, Spill Prevention, and Waste Feed Cutoff Systems	262.194	Operating in accordance with design specifications and operating procedures.	Daily		
	Aboveground Portions of Tank System	264.193(f)(1) 264.194(c)(1)	Evidence of corrosion, leaks, or spills. Any leaks or spills must be reported immediately to the CCR.	Daily		
	Data from Monitoring Equipment (e.g., temperature, pressure, level gauges)	264.195(b)	Operating in accordance with design specifications and operating procedures.	Daily		
	Data from Leak Detection Equipment or Level Indicating Devices	264.195	Operating in accordance with design specifications and operating procedures, and calibration is current.	Daily		
	Auxiliary Equipment (in area immediately surrounding the system, including secondary containment)	264.193(f) 264.194(c)(2)	Evidence or signs of corrosion, releases, leaks, or spills of hazardous waste. Any leaks or spills must be reported immediately to the CCR.	Daily		
	Auxiliary Equipment Not in Secondary Containment	264.195	Evidence or signs of corrosion, releases, leaks, or spills of hazardous waste. Any leaks or spills must be reported immediately to the CCR.	Daily		
	Piping, Pumps, Flanges, and Connectors	Contingency Plan	Check for potential leaks. ⁱ	Daily		
	Loading, Unloading, Transfer, and Sample Connection Systems	Contingency Plan	Capped, plugged, or blind-flanged when not in use.	Daily		
	Incompatible Ignitable/ Reactive	264.17 264.198 264.199	Incompatible waste separated from ignition sources. No ignitable or reactive waste stored in tank. No ignitable or incompatible wastes stored in the same tank system.	Daily		
	Air Emission Air Pollutant Emissions (tanks)	264.200 264.1034	Tank is not heated to a temperature greater than design temperature. Tank is open only for routine inspection, maintenance, or other normal operations.	Daily		

24915-00-G01-GGPT-00005 – ATTACHMENT F – PROCEDURES TO PREVENT HAZARDS (CDRL A019)

1

Loading/Unloading/Transfer Area					
Inspected (\)	Item	Regulatory Citation	Inspection Criteria	Inspection Frequency	Corrective Action Required (Yes/No) (if Yes, describe)
				Daily	Deficiency (describe)
				Daily	
<u>Additional Comments:</u>					

1 Record equipment name, tag number, and date of discovery for leaking sources. Confirmatory monitoring is required within 5 calendar days. Use "Monthly Subpart BB Equipment Monitoring and Follow-up" checklist to document leak and repair confirmation monitoring. Place a weatherproof tab on the leaking equipment that is marked with equipment identification or tag number and the date evidence of leak was discovered.

SAMPLE

Record equipment name, tag number, and date of discovery for leaking sources. Confirmatory monitoring is required within 5 calendar days. Use "Monthly Subpart BB Equipment Monitoring and Follow-up" checklist to document leak and repair confirmation monitoring. Place a weatherproof tab on the leaking equipment that is marked with equipment identification or tag number and the date evidence of leak was discovered.

SAMPLE

Form BG 00-TKD-GGPT-20001A03.02, Revised 29 OCT 2013 (TEMPLATE-00643)

Attachment 3 – Sample Daily Inspection Liquid Loading Stations

BGCAPP Area(s): Hazardous Waste Tanks and Subpart X Systems			Date:	Time:	Inspector(s):	
Inspected (✓)	Item	Regulatory Citation	Inspection Criteria	Inspection Frequency	Corrective Action Required (Yes/No) (if Yes, describe)	Deficiency (describe) Corrective Action Completed
	Loading, Unloading, and Transfer Connections	Contingency Plan	Capped, plugged, or blind-flanged when not in use.	Daily		
	Associated Piping, Valves, Pumps, Flanges, and Connections	264.195(b)(1)	Operating in accordance with design specifications and operating procedures. Immediately report any leaks to CCR and tag the leaking equipment. ¹	Daily		
	Aboveground Portions of Liquid Waste Loading Dock System	264.195(b)(1)	Evidence or signs of releases, leaks, or spills. Immediately report any leaks, spills, or releases to the CCR and tag the leaking equipment. ¹	Daily		
	Containment	264.193	Evidence of corrosion, leaks, or spills. Any leaks or spills must be immediately reported to the CCR.	Daily		
	Secondary Containment	264.193	Evidence or signs of cracks, gaps, mars, scuff, or other deterioration. Stormwater accumulation must be removed as soon as it is possible, but in any case within 24 hours.	Daily		
	Spill Cleanup and Decontamination Equipment and Supplies	Contingency Plan	Check for adequate inventory and condition of required decontamination/spill cleanup equipment and supplies.	Daily		
Security						
Inspected (✓)	Item	Regulatory Citation	Inspection Criteria	Inspection Frequency	Corrective Action Required (Yes/No) (if Yes, describe)	Deficiency (describe)
	Fences, Gates, and Locks	264.14	Evidence of gaps, holes, or damage to fence. Downed or damaged fence or gate posts. Erosion gaps and/or holes under the fence/gate. Vandalism, open or missing locks.	Daily		
	Perimeter Warning Signs	264.14	Presence of warning signs on fences and gates. Visible and legible.	Daily		
	Security of Process Areas	264.14	Doors locked to prevent unauthorized entry when buildings or processes are not in use	Daily		
Additional Comments:						